

Subscriber access provided by ISTANBUL TEKNIK UNIV

A New Synthesis of Pongachalcone I, Glabrachromene, Mixtecacin, Candidin, Atalantoflavone Dimethylether, **Racemoflavone Dimethylether, and** Dihydropyranoaurones, and Their Analogues

M. Subramanian, K. Kumaraswami, and K. J. Rajendra Prasad

J. Nat. Prod., 1992, 55 (9), 1213-1229• DOI: 10.1021/np50087a007 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50087a007 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

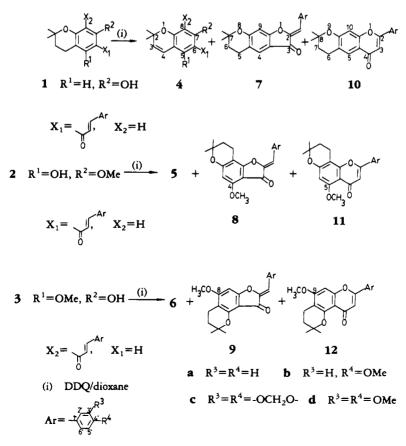
A NEW SYNTHESIS OF PONGACHALCONE I, GLABRACHROMENE, MIXTECACIN, CANDIDIN, ATALANTOFLAVONE DIMETHYLETHER, RACEMOFLAVONE DIMETHYLETHER, AND DIHYDRO-PYRANOAURONES, AND THEIR ANALOGUES

M. SUBRAMANIAN, K. KUMARASWAMI, and K.J. RAJENDRA PRASAD*

Department of Chemistry, Bharathiar University, Coimbatore 641 046, India

ABSTRACT.—Treatment of substituted o-hydroxychalcones 1-3 with 2,3-dichloro-5,6dicyano-1,4-benzoquinone [DDQ] afforded a mixture of chromenochalcones 4-6 (pongachalcone I [5a], glabrachromene [5d]), aurones 7-9 and flavones 10-12. A new and convenient synthesis of candidin [17a], atalantoflavone dimethylether [17b], racemoflavone dimethylether [17d], mixtecacin [20a], and their derivatives via the corresponding unknown dihydropyranoflavanones 13-15 has also been described.

Pyranoflavonoids which possess interesting pharmacological properties (1-3) are known to occur mainly in the plant family Leguminosae. The naturally occurring flavonoids pongachalcone I, glabrachromene, candidin, and mixtecacin isolated from *Pongamia glabra* (4-6), *Tepbrosia candida* (7), *Tepbrosia bracteolata* (8), *Tepbrosia praecans* (9), and *Tepbrosia woodii* (10) have a 2,2-dimethyl-2*H*-pyrano moiety as a part of their structure. Several methods have been developed (11-17) for synthesis of these flavonoids in the literature. However in these approaches the yields of the flavonoids were not appreciable. Herein we report a facile method for deriving the flavonoids mentioned in the title from dihydropyranochalcones 1-3, which were prepared by Friedel-Crafts acylation of hydroxychromans (18).

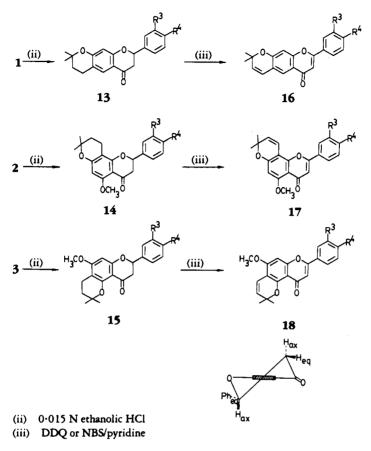

RESULTS AND DISCUSSION

7-Hydroxy-6-cinnamoyl-2,2-dimethylchroman [1a] was treated with DDO in boiling dioxane for 15 h. Three products, 4a, 7a, and 10a, were identified. Compound 4a, obtained from petroleum ether elution of a Si gel column, showed absorption at 1630 cm⁻¹ in its ir spectrum indicating the presence of an α , β -unsaturated carbonyl group. The coupled doublets at δ 5.70 and 6.38 ppm (J = 10 Hz) in its ¹H-nmr spectrum are due to H-3 and H-4 of the pyran ring. Further, proton doublets at 7.73and 8.00 ppm (J = 16 Hz) and the one-proton singlet at 13.60 ppm closely resembled those of chalcone 1a (19), in addition to the gem-dimethyl and aromatic protons, and were assigned to H- α , H- β , and 7-OH, respectively. These data indicate the structure 7-hydroxy-6-cinnamoyl-2,2-dimethylchromene for 4a. The identity of 4a was further established by preparing it by condensation of 6-acetyl-7-hydroxy-2,2-dimethylchromene with benzaldehyde and comparing the analytical and spectral data (mp, undepressed mixed mp, co-tlc, and superimposable ir and nmr spectra). Further elution of the column with 4% EtOAc/petroleum ether provided 7a, mp 196-197°. Absorptions at 1685 and 1630 cm⁻¹ in its ir spectrum were ascribed to lactone carbonyl and C=C stretching vibrations. In the ¹H-nmr (CDCl₂) spectrum, in addition to a six-proton singlet at δ 1.34 ppm (CMe₂), two-proton triplets at δ 1.90 and 2.85 ppm (-CH₂-CH₂-) of the pyran ring, and a seven-proton multiplet at δ 7.30–7.90 ppm (aromatic H), the single proton singlet at δ 6.45 ppm was assigned to a benzylidene proton (=HC-). Both **4a** and **7a** were C₂₀H₁₈O₃ by elemental analyses (**4a**: C 78.41, H 5.95; 7a: C 78.43, H 5.90) and mass spectra (m/z 306.36). These data confirmed structure 7a to be 2-benzylidene-7,7-dimethyl-5,6-dihydropyrano[3,2-f]benzofuran-3-one. The third compound, 10a, mp 145-146° [lit. (11) mp 146°] was obtained in 30%

yield and identified as 8,8-dimethyl-2-phenyl-6,7-dihydro-4H,8H-benzo[1,2-b:5,4-b']dipyran-4-one.

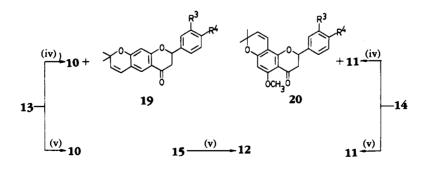
Extension of this reaction technique to chalcones **1b–1d** gave rise to the corresponding chromenochalcones **4b–4d**, dihydropyranoaurones **7b–7d**, and dihydropyranoflavones **10b–10d**, respectively (Scheme 1). The pyranoflavones **10a–10d** were compared with authentic samples prepared (20) from 6-acetyl-7-hydroxy-2,2-dimethylchroman with aroylchloride by the Baker-Venkataraman method to establish their identity. Proof of structure of **4** was further confirmed by ¹³C nmr of the methoxy derivative **4b**. In its decoupled spectrum, the pyran ring C-3 and C-4 signals, δ 127.346 and 114.193 ppm, were comparable to those reported (21) for 2,2-dimethylchromene.

Similarly, chromenochalcones **5a-5d**, **6b-6d**, dihydropyranoaurones **8a-8d**, **9b-9d**, and dihydropyranoflavones **11a-11d**, **12b-12d** were obtained from the corresponding pyranochalcones **2a-2d**, and **3b-3d** (Scheme 1). Products **4**, **5**, and **6** are the dehydrogenated compounds of the corresponding chalcones **1**, **2**, and **3**, and the other two structural types, viz. aurones **7**, **8**, **9** and flavones **10**, **11**, **12**, are cyclo-oxidation products. The position of electron-donating substituents in the B ring has very little effect on yields. On the other hand, in the case of chalcones with substituents in the A ring we noted considerable influence: the yields of angular pyranoflavones **11**, **12** obtained from the corresponding chalcones **2**, **3** were comparable to the yield of linear pyranoflavone **10** obtained from chalcones **1**, while yields of angular aurones **8**, **9** were low when compared with those of linear aurone **7**.


Flavanones are isomeric with chalcones which are observed to by synthetic as well as biosynthetic precursors of the former group. Isomerization-cyclization of the chalcones 1 with acids forming dihydropyranoflavanones followed by dehydrogenation constitutes an important method among those hitherto known for the synthesis of pyranoflavones 16. Though dehydrogenation of dihydropyranoflavanone has proved useful for the synthesis of flavone, the overall yield of the flavone was poor; the reason being that the method (22) for deriving the precursor, viz., prenylated flavanone (from prenylbromide and corresponding flavanone), was not as productive and gave a mixture.

It was felt that methodology that would provide an alternative and convenient access to the hitherto unknown dihydropyranoflavanone should make the acid-catalyzed isomerization-cyclization technique more expedient and widely applicable. Chalcone **1a**, when refluxed with a solution of 0.015 N ethanolic HCl for 20 h gave a single compound (mp 150–151°) in 60% yield (95% based on unrecovered **1a**). It was identified as the corresponding flavanone, 2-phenyl-8,8-dimethyl-2,3,6,7-tetrahydro-4H,8H-benzo[1,2-b:5,4-b']dipyran-4-one [**13a**]. The absorption at 1660 cm⁻¹ in its ir spectrum was ascribable to a carbonyl group. The structure was confirmed by ¹H-nmr, and the chromanone ring (H-2) proton appeared as a doublet of doublets at δ 5.35 ppm. The double doublets centered at δ 3.0 ppm, J = 16.5 and 12.9 Hz, were assignable to H_{ax}-3, and a doublet of doublets (overlapping with methylene protons at C-6) at δ 2.79 ppm was assigned to H_{eq}-3 forming an ABX system. The coupling constant of proton H-2 [viz. 13.5 Hz (ax-ax), and 2.7 Hz (ax-eq)] indicated it to be axial in the quasi-chair conformation of the chromanone ring, with phenyl equatorial.

Extension of this isomerization-cyclization technique to chalcones **1b–1d**, **2a–2d**, and **3b–3d** gave rise to the corresponding flavanones **13b–13d**, **14a–14d**, and **15b–15d**, respectively (Scheme 2). A critical factor noted in this reaction is that a slight increase in acid concentration above 0.015 N had an immense counter-productive effect as observed (23) in the case of simple chalcone-flavanone systems. Structures assigned for flavanones were also confirmed by ¹³C-nmr spectra of the methoxy compound **13b**. The signals at δ 44.127 and 79.331 ppm were characteristic of C-3 methylene and C-2 oxymethine carbons of flavanone [C-3 and C-2 carbon signals of flavone, chalcone occur downfield (110–165 ppm) when compared to flavanone (40–80 ppm)] (24).


Dehydrogenation of both flavanone and dihydropyrans using DDQ and NBS followed by pyridine has been reported (26–28). Treatment of dihydropyranoflavanone **13a** with DDQ in dioxane and with NBS/pyridine in CCl_4 separately gave **16a**. These two methodologies were extended to the dihydropyranoflavones **13b–13d**, **14a–14d**, and **15b–15d** to obtain the corresponding pyranoflavones **16b–16d**, **17a–17d**, and **18b–18d**, respectively (Scheme 2).

Expecting to derive the titled pyranoflavanone, mixtecacin, and their analogues, we treated dihydropyranoflavanone 13a with DDQ (1 mmol) in boiling dioxane for 6 h. Workup of the product showed two spots on tlc which were identified as the pyranoflavanone 19a and dihydropyranoflavone 10a. On similar treatment, dihydropyranoflavanones 13c, 14a, and 14c gave the pyranoflavanones 19c, 20a, and 20c and the dihydropyranoflavones 10c, 11a, and 11c, respectively (Scheme 3). Thus, the simple high yield conversion $1 \mapsto \mapsto 16$, in two steps, represents a productive approach to the titled flavonoid systems, viz., candidin [17a] (7) [isopongaflavone [17a] (8)], atalantoflavone dimethylether [17b] (25), recemoflavone dimethylether [17d] (25) and mixtecacin [20a] (10) [obovatin methylether [20a] (23)]. Structures of pyranoflavanones 19 and 20 were further confirmed by acid isomerization-cyclization of the corresponding chromenochalcones 4 and 5.

In continuation of our efforts aimed at developing a new and simple route for converting the dihydropyranoflavanones 13–15 into pyranoflavones 16–18 it was felt that I_2 and KOAc could be employed for the transformation. Accordingly, dihydropyranoflavanone 13a was heated with I_2 in the presence of freshly fused KOAc in HOAc at 120° for 5 h. A single product (mp 145–146°) was obtained in 80% yield and identified as the dihydropyranoflavone 16a. Extension of the technique to 13b–13d, 14a–14d,

(iv) DDQ in dioxane(v) I₂, KOAc/HOAc

and **15b–15d** gave a similar series of compounds. By choosing the proper reagent and conditions, the selected ring could be dehydrogenated.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES. —Melting points were determined on Boetius microheating table and Mettler FP 5 apparatus and are uncorrected. Cc was performed on columns of Si gel (Merck, 60–120 mesh). Analytical tlc was performed on Si gel-G (Merck). Ir were recorded on a Perkin Elmer 597 spectrophotometer in KBr. ¹H-nmr were recorded on a Varian EM-360 (90 MHz), XL 100 (80 MHz), and General Electric QE-300 (300 MHz) spectrometers in solution of CDCl₃. ¹³C nmr were obtained on General Electric QE-300 (75 MHz) and VXR-300 standard (75 MHz) spectrometers. Chemical shifts for both the ¹H nmr and ¹³C nmr are reported in δ units downfield of TMS and coupling constants are in Hz. Microanalyses were performed on Carlo Erba 1106 and Perkin Elmer-Model 240 CHN analysers. Resorcinol, phloroglucinol, anhydrous AlCl₃, POCl₃, DDQ, NBS, MeCN, C₅H₅N, HOAc, benzaldehyde, anisaldehyde, piperanal, vanillin, zinc dust, and KOAc were purchased from SISCO Industrial Ltd., Bombay, India. All hydroxychromans 1–3 were prepared in our laboratory according to usual methods (29,30).

PREPARATION OF CHALCONES 1–3.—To a mixture of hydroxysubstituted 2,2-dimethylchroman (29,30) (10 mmol), cinnamic acid (10 mmol), and anhydrous $AlCl_3$ (10 g) was added POCl_3 (25 ml), and the mixture was allowed to stand at room temperature for 24 h. The reaction mixture was then poured into crushed ice with stirring. The separated solid was filtered and purified by Si gel cc using petroleum ether-EtOAc (10:1). The following pyranochalcones were obtained. **1a**: mp 192–193° [lit. (19) 192–193°]. **1b**: mp 145–146° [lit. (19) 147–148°]. **1c**: mp 202–203° [lit. (19) 201–203°]. **1d**: mp 118–119° [lit. (19) 120–121°]. **2a**: mp 120–121° [lit. (19) 120–121°]. **2b**: mp 113–114° [lit. (19) 112–113°]. **2c**: mp 127–129° [lit. (30) 125–126°]. **2d**: mp 119–120° [lit. (30) 117–118°]. **3b**: mp 130–131°. **3c**: mp 175–176°. **3d**: mp 140–142°.

PREPARATION OF CHROMENOCHALCONES 4-6, DIHYDROPYRANOAURONES 7-9, AND DIHY-DROPYRANOFLAVONES 10-12.—A mixture of dihydropyranochalcones 1-3 (1 mmol) and DDQ (2 mmol) in dry dioxane (20 ml) was refluxed for 15 h. The reaction mixture was then poured into saturated Na₂CO₃ solution (20 ml) and extracted with CHCl₃ (2 × 25 ml). The CHCl₃ extract was washed with H₂O and dried over anhydrous Na₂SO₄. The residue obtained on evaporation of the solvent was chromatographed on Si gel. Elution with petroleum ether/EtOAc gave the respective chromenochalcones, aurones, and flavones. The physical and spectral data of chromenochalcones 4a-4d, 5a-5d, 6b-6d, aurones 7a-7d, 8a-8d, 9b-9d, and flavones 10a-10d, 11a-11d, and 12b-12d are given in Tables 1, 2, and 3, respectively.

ISOMERIZATION-CYCLIZATION OF CHALCONES 1-3 INTO FLAVANONES 13-15.—To a solution of dihydropyranochalcones 1-3 (2 mmol) in EtOH (150 ml) was added 0.1 N HCl (25 ml). The solution was refluxed on a steam bath for 20 h and concentrated to a small volume under reduced pressure. After cooling, the residual solution was diluted with H₂O and extracted with CHCl₃ (3 × 20 ml). The CHCl₃ extract was washed successively with dilute NaHCO₃ (100 ml) and H₂O (200 ml) and dried over anhydrous Na₂SO₄. Removal of the solvent furnished a residue which when subjected to cc on Si gel eluted with petroleum ether/EtOAc afforded the corresponding dihydropyranoflavanones 13, 14, and 15 (yield above 90% based on unrecovered chalcones). The physical and spectral data of the dihydropyranoflavanones are listed in Table 4.

CONVERSION OF FLAVANONES 13–15 INTO FLAVONES 16–18.—DDQ method.—A mixture of dihydropyranoflavanones 13–15 (1 mmol) and DDQ (454 mg, 2 mmol) in dioxane (15 ml) was refluxed for 6 h. Reaction mixture was then filtered and the residue obtained by evaporation of the solvent was dissolved in CHCl₃ and washed successively with aqueous NaHCO₃ and H₂O. Evaporation of the dried extract furnished the pyranoflavones 16–18.

NBS method.—A solution of the dihydropyranoflavanones 13-15 (1 mmol), NBS (356 mg, 2 mmol), and dibenzoyl peroxide (25 mg) in anhydrous CCl₄ (25 ml) was refluxed for 6 h. The reaction mixture was cooled, and the precipitated succinimide was filtered. The residue obtained after removal of the solvent was refluxed with pyridine (3 ml) for 1 h, cooled, diluted with H₂O, and extracted with CHCl₃. The CHCl₃ extract was washed with dilute HCl and H₂O and dried. Evaporation of the solvent afforded the pyranoflavones 16–18. The physical and spectral data of pyranoflavones 16–18 are listed in Tables 5 and 6.

PREPARATION OF PYRANOFLAVANONES 19 AND 20.—2-Phenyl-8,8-dimethyl-2,3-dibydro-4H,8H-benzo[1,2-b:5,4-b']dipyran-4-one [19a].—A mixture of flavanone 13a (308 mg, 1 mmol) and DDQ (227 mg, 1 mmol) in dioxane (15 ml) was refluxed at 120° for 6 h. The precipitated hydroquinone was filtered, and the solution was concentrated to a small volume under reduced pressure. The residue ob-

s 4, 5, and 6.
Chromenochalcones
Data for
TABLE 1.

Compound	Mp (solvent) ^a	Yield (%)	Ir (KBr) ν max cm ⁻¹	Molecular formula	Analysis % observed C,H (calcd C,H)	¹ H nmr (CDCl ₃), δ ppm <i>J</i> in Hz
4a	148–149 (100:0)	25	1630,1600	C ₂₀ H ₁₈ O ₃ (306.36)	78.41,5.95 (78.43,5.92)	1.45 (s, 6H, CMe ₂ , 5.70 (d, 1H, H-3, $J = 10$), 6.38 (d, 2H, H-4, H-8, $J = 10$), 7.35-7.60 (m, 5H, H _{arom}), 7.73 (d, 2H, H-5, H- α , $J = 16$), 8.0 (d, 1H, H- β , $J = 16$), 13.60 (s, 1H, 2, 2)
4b ^b	151–152 (99:1)	20	1630, 1600	C ₂₁ H ₂₀ O ₄ (336.39)	74.90,6.00 (74.79,5.99)	J_{-OH} J=4(s, 6H, CMe ₂), 3.84(s, 3H, 4'-OMe), 5.70(d, 1H, H-3, J = 10), 6.41(d, 2H, H-4, H-8, J = 10), 7.01(d, 2H, H-3', H-5', J = 9), 7.20-7.80(m, 4H, H-2', H-5, H-6', H-\alpha), 7.90 J_{-1} u u u L_{-1} L_{-1} L_{-1} L_{-1} L_{-2}
4c	163–164 (98:2)	25	1620,1550	C ₂₁ H ₁₈ O ₅ (350.37)	72.04,5.22 (71.88,5.18)	(a, m, m-p.) $-10, 10, 00, 00, 01, 1-00, 00, 00, 00, 00, 00, 00, 00, 01, 12, 12, 00, 00, 00, 00, 00, 00, 00, 00, 00, 0$
4d	165–166 (98:2)	18	1620, 1545	C ₂₂ H ₂₂ O, (366.42)	72.08,6.07 (72.12,6.05)	1.42(s, 6H, CMe ₂ , 3.90, 3.96(2s, 3H, each, 3'-OMe, 4'-OMe, 5.60(d, 1H, H-3, $J = 10$), 6.31(d, 2H, H-4, H-8, J = 10), 6.90(d, 1H, H-5', $J = 9$), 7.13–7.28(m, 2H, H-2', H-6'), 7.39(d, 1H, H- α , $J = 16$), 7.47(s, 1H, H-5), 7.80(d, H-6'), 7.39(d, 1H, H- α , $J = 16$), 7.47(s, 1H, H-5), 7.80(d,
Sa	106–107 (99:1)	20	1625, 1585	C ₂₁ H ₂₀ O ₄ (336.39)	75.03,6.03 (74.99,5.99)	1.45 (6.4), Me_{2} , 3.92 (5, 34), $7-OMe$), 5.46 (d, $1H$, $H-3$, $J = 1.45$ (5, 64 , Me_{2}), 3.92 (5, 34), $7-OMe$), 5.46 (d, $1H$, $H-3$, $J = 10$), 5.90 (5, $1H$, $H-8$), 6.64 (d, $1H$, $H-4$, $J = 10$), $7.30-7.51$ (m, $5H$, H_{arom}), $7.64-7.81$ (m, $2H$, $H-\alpha$, $H-\beta$), 14.49 (s, $1H$, 4.04 (m, $2H$, H^{-2} , $H-\beta$), 14.49 (s, $1H$, 4.04 (s, $1H$), 16.49 (s, $1H$, 4.04 (s, $1H$), 16.49 (s, $1H$), 16.40 (s, $1H$), 1
56	90-92 (100:0)	22	1630, 1605	C ₂₂ H ₂₂ O, (366.42)	72.15,6.08 (72.12,6.05)	$J_{-5}^{-0.01}$, 6H, CMe ₂), 3.81, 3.92 (2s, 3H each, 7-OMe, 4'-OMe, 5.45 (d, 1H, H-3, $J = 10)$, 5.92 (s, 1H, H-8), 6.68 (d, 1H, H-4, $J = 10)$, 6.91 (d, 2H, H-3', H-5', $J = 9)$, 7.55 (d, 2H, H-2', H-6', $J = 9)$, 7.70–7.81 (m, 2H, H- α , H- β), 14.45 (s, 1H, 5-OH)

Journal of Natural Products

					TABLE	TABLE 1. (Continued)	
Compound	pun	Mp (solvent) ⁴	Yield (%)	Ir (KBr) ν max cm ⁻¹	Molecular formula	Analysis % observed C,H (calcd C,H)	l H nmr (CDCl ₃), δ ppm <i>J</i> in Hz
5c · · ·	•	124–125 (98:2) 11:- 23131269	20	1649,1580	C ₂₂ H ₂₀ O ₆ (380.40)	69.50,5.35 (69.46,5.30)	!
5d		(100:0) 1201 (100:0) 115–116 (100:0)	20	1620,1600	C ₂₃ H ₂₄ O ₆ (396.44)	69.60,6.15 (69.68,6.10)	1.45 (s, 6H, CMe ₂), 3.91, 3.92, 3.93 (3s, 3H each, 7-OMe, 3'- OMe, 4'-OMe), 5.46 (d, 1H, H-3, $J = 10$), 5.92 (s, 1H, H-8), 6.68 (d, 1H, H-4 $J = 100$, 6.89 (d, 1H, H-5', $J = 90$, 7.12 (s)
9	•	159–160	21	1625,1600	C ₂₂ H ₂₂ O,	72.08,6.10	1H, H-2'), 7.23 (d, 1H, H-6', $J = 9$), 7.76–7.81 (m, 2H, H- α , H-B), 14.45 (s, 1H, 5-OH) 1.50(s, 6H, CMe ₂), 3.85 (s, 6H, 5-OMe, 4'-OMe), 5.45 (d, 1H,
		(1:66)			(366.42)	(72.15,6.09)	H-3, $J = 100$, 6.07 (s, 1H, H-6), 6.60 (d, 1H, H-4, $J = 100$, 6.91 (d, 2H, H-3', H-5', $J = 9$), 7.58 (d, 2H, H-2', H-6', $J = 9$), 7.82-8.13 (m, 2H, H- α , H- β), 14.43 (s, 1H, 7-OH)
6c	•	164–165 (98:2)	20	1635, 1605	C ₂₂ H ₂₀ O ₆ (380.40)	69.50,5.28 (69.46,5.30)	1:53 (s, 6H, CMe ₂), 3:84 (s, 3H, 5-OMe), 5.46 (d, 1H, H-3, <i>J</i> = 10), 6.01 (s, 2H, -OCH ₂ O-), 6.06 (s, 1H, H-6), 6.60 (d, 1H, H-4, <i>J</i> = 10), 6.83 (s, 1H, H-5'), 7.00-7.20 (m, 2H, H-2', H-4', 7 7010, 1H, H-w, <i>I</i> = 16) 8 001d, 1H, H-8 <i>I</i> = 16)
	•	120-122 (100:0)	15	1630, 1600	C ₂₃ H ₂₄ O ₆ (396.44)	69.70,6.12 (69.68,6.10)	14.42 (s, 1H, 7-OH) 15.43 (s, 1H, 7-OH) 1.53 (s, 6H, CMe ₂), 3.84, 3.86 (2s, 9H, 5-OMe, 3'-OMe, 4'- OMe, 5.45 (d, 1H, H-3, $J = 10$), 6.06 (s, 1H, H-6), 6.61 (d, 1H, H-4, $J = 10$), 6.82 (s, 1H, H-5'), 7.03–7.10 (m, 2H, H-2', H-6'), 7.65–8.10 (m, 2H, H-\alpha', H-β), 14.45 (s, 1H, 7-OH)
^a Solve b 4b :	ent in e ¹³ C nm	^a Solvent in each case is petroleur ^b 4th: ¹³ C nmr (CDCI), 75 MHz)	1 n ether-) & 28.5	Detroleum ether-EtOAc in ratio shown in parentheses. 75 MHz) & 28.541 Me., 55.370 (OMe), 76.578 (C-2	o shown in pai 70 (OMe), 76	rentheses. .578 (C-2), 104.6	Detroleum ether-EtOAc in ratio shown in parentheses. 75 MHz) & 28.541 Me., 55.370 (OMe), 76.578 (C-2), 104.670 (C-5a), 113.428 (C-8), 114.193 (C-4), 114.396 (C-2', C-6'),

^b4b: ^{1,2}C nmr (CDCl₃, 75 MHz) δ 28.541 Me₂, 55.370 (OMe), 76.578 (C-2), 104.670 (C-5a), 113.428 (C-8), 114.193 (C-4), 114.396 (C-2', C-6'), 117.729 (C-α', 121.095 (C-1), 127.095 (C-1'), 127.346 (C-3), 128.747 (C-5), 130.320 (C-3' and C-5'), 144.151 (C-β), 160.395 (C-8a), 161.735 (C-4'), 166.453 (C-7), 191.608 (C=O).

<mark>ہ</mark> 8
Dihyropyranoaurones
TABLE 2. Data for]

Compound	Mp (solvent) ⁴	Yield (%)	Ir (KBr) ν max cm ⁻¹	Molecular formula	Analysis % observed C, H (calcd C, H)	¹ Н пmr (CDCI ₃), δ ppmJ in Hz
7a	196–197 (96:4)	15	1690,1630	C ₂₀ H ₁₈ O ₃ (306.36)	78.43,5.90 (78.43,5.92)	$1.34(s, 6H, CMe_2), 1.90(t, 2H, H-6, J = 7), 2.85(t, 2H, H-5, J = 7), 6.45(s, 1H, =CH-), 7.30(s, 1H, H-9), 7.42-7.80(m, 1.12, 2.20, 2.11, 1.22)$
7b	144–145 (97:3)	13	1685, 1635	C ₂₁ H ₂₀ O ₄ (336.39)	74.85,6.06 (74.79,5.99)	H_{acom} , 7.20(5, 1H, H-4) 1.45(5, 6H, CMe ₂), 1.95(1, 2H, H-6, $J = 7$), 2.85(1, 2H, H-5, J = 7), 3.82(5, 3H, OMe), 6.42(5, 1H, =CH-), 7.00(d, 2H, H-3', H-5', $J = 8.7$), 7.30(d, 2H, H-2', H-6', $J = 8.7$), 7.40, 5.07(2) 2H H 0.4 A
76	213–214 (94:6)	15	1700,1630	C ₂₁ H ₁₈ O ₅ (350.37)	72.03,5.15 (71.99,5.18)	J = 7, 6.50(c, 2H, H-5, $J = 7$), 2.80(c, 2H, H-5, $J = 7$), 6.50(c, 2H, H-5, $J = 7$), 6.50(c, 1H, =CH-1), 6.10(c, 2H, -OCH ₂ O-), 6.90-7.30
7d	169–170 (95:5)	12	1700,1625	C ₂₂ H ₂₂ O, (366.42)	72.15,6.08 (72.12,6.05)	$J_{14}, J_{11}, T_{16000}, J_{10000}, J_{11}, J_{1200}, J_$
8a	160–162 (97:3)	10	1680, 1630	C ₂₁ H ₂₀ O ₄ (336.39)	74.95,6.00 (74.99,5.99)	1H, H-9), $1.90(s, 1H, H-4)$ 1.38(s, 6H, CMe ₂), $2.00(s, 2H, H-8, J = 7)$, $2.60(s, 2H, H-9)$, $J = 7$, $3.84(s, 3H, OMe)$, $6.05(s, 1H, H-5)$, $6.60-7.20(m)$, $J = 70$, $2.00(m)$, $J = 70$, $3.00(s, 3H, OMe)$, $5.00(s, 1H, H-5)$, $5.00-7.20(m)$, $J = 70$, $J = 7$
8b	190–193 (98:2)	10	1685, 1625	C ₂₂ H ₂₂ O, (366.42)	72. 10,6. 10 (72. 12,6.05)	0.01, $-CH^2$, H_{4000} , 1.87 (t, 2H, H-8, α 7), 2.65 (t, 2H, H-9, 1.43 (s, 6H, CMe ₂), 1.87 (t, 2H, H-8, α 7), 3.85, 3.89 (2s, 3H each, 2 × OMe), 6.10 (s, 1H, H-5), 6.90-7.00 (m, 3H, =CH-, H-3', H-5'), 7.30 (d, 2H, H-2')
80	230-232 (95:5)	11	1700, 1640	C ₂₂ H ₂₀ O ₆ (380.40)	69.50,5.25 (69.46,5.30)	J_{1-0} , J_{1-0} , J_{1-0} , J_{1} 1.44 (s, 6H, CMe ₂), 1.80 (t, 2H, H-8, $J = 7$), 2.70 (t, 2H, H-9, J = 7), 3.89 (s, 3H, OMe), 6.00 (s, 3H, -OCH ₂ O-, H-5), 6.70- 6.90 (m, 2H, H-5', H-6'), 6.95 (s, 1H, =CH-), 7.70 (s, 1H, H-2')

				TABLE	TABLE 2. (Continued)	
Compound	Mp (solvent) ⁴	Yield (%)	Yield Ir (KBr) Molecular (%) ν max cm ⁻¹ formula	Molecular formula	Analysis % observed C, H (calcd C, H)	l Η nmr (CDCl ₃), δ ppm <i>J</i> in Hz
	205-207 (93:7)	10	10 1685, 1645 C ₂₃ H ₂₄ O ₆ (396.44)	C ₂₃ H ₂₄ O ₆ (396.44)	69.65,6.13 (69.68,6.10)	1.45 (s, 6H, CMe ₂), 1.90(t, 2H, H-8, $J = 7$), 2.85 (t, 2H, H-9, $J = 7$), 3.85 (s, 9H, 3 × OMe), 6.02 (s, 1H, H-5), 6.55 (s, 1H, = CH) 7 00-7 70(m, 3H H)
96	171–174 (94:6)	80	1680, 1625	C ₂₂ H ₂₂ O, (366.42)	72.10,6.10 (72.15,6.09)	J = 7, 3.85 (s, 6H, CMe ₂), 1.85 (t, 2H, H-6, $J = 7$), 2.90 (t, 2H, H-7, $J = 7$), 3.85 (s, 6H, 2 × OMe), 6.10 (s, 1H, H-9), $6.90-7.80$
96	193–195 (95:5)	6	$\begin{array}{c c} 1690, 1625 \\ \hline C_{22}H_{20}O_6 \\ \hline (380.40) \\ \end{array}$	C ₂₂ H ₂₀ O ₆ (380.40)	69.51,5.32 (69.46,5.30)	(m,)H, =CH-, $H_{mom}^{(m)}$ 1.50(s, 6H, CMe ₂), 1.85 (s, 2H, H-6, $J = 7$), 2.85 (s, 2H, H-7, $J = 7$), 3.80(s, 3H, OMe), 60.0(s, 2H, -OCH ₂ O-), 6.10(s, 1H, U, O, 6.56, 1H, -OCH ₂ O-), 7.10, 7.20(-2H, U, O), 7.20(-2H, U), 7.20(-2H, U
p6	140–142 (97:3)	x	1690,1625 C ₂₃ H ₂₄ O ₆ (396.44)	C ₂₃ H ₂₄ O ₆ (396.44)	69.72,6.08 (69.68,6.10)	T_{1-7} , 0.00 (5, 11, -Cdr.), 7.10-7.20 (m, 211, T_{440m}) 1.50 (5, 6H, CMe ₂), 1.85 (t, 2H, H-6, $J = 7$), 2.85 (t, 2H-7, $J = 7$), 3.84 (s, 9H, 3 × OMe), 6.05 (s, 1H, H-9), 6.90-7.40 (m, 4H, =CH-, H_{440m})
*Solvent in each case is	ach case is petroleum	ether-	ErOAc in the	perroleum ether-EtOAc in the ratio shown in parentheses.	Darentheses	

Solvent in each case is petroleum ether-EtOAc in the ratio shown in parentheses.

11, and 12.
nes 10,
ropyranoflavoi
Dihyd
<u>o</u>
Data
TABLE 3.

Compound	Mp (solvent)*	Yield (%)	Ir (KBr) ν max cm ⁻¹	Molecular formula	Analysis % observed C,H (calcd C,H)	¹ H nmr (CDCl ₃), δ ppm <i>J</i> in Hz
10a	145–146 (90:10)	20	1635,1605	C ₂₀ H ₁₈ O ₃ (306.36)	78.40,6.00 (78.43,5.92)	1.37 (s, 6H, CMe ₂), 1.85 (t, 2H, H-7, $J = 7$), 2.90 (t, 2H, H-6, $J = 7$), 6.72 (s, 1H, H-3), 6.90 (s, 1H, H-10), 7.45–8.00 (m, 2H)
10b	[lit. (20) 161–162 161–162 (95:5) [lit. (20) 161–162]	25	1630, 1605	C ₂₁ H ₂₀ O ₄ (336.39)	74.70,5.90 (74.79,5.99)	J_{14} , J_{44} , J_{46} , J_{46} , J_{46} , J_{14} , J_{16} , J_{1
10c	223–224 (90:10) [lit. (20) 223–224]	25	1630,1595	C ₂₁ H ₁₈ O, (350.37)	71.90,5.10 (71.99,5.18)	H-6, $J = 9$), $J = 90$ (5, 1H, H-2) 1.42 (6, 6H, CMe ₂), 1.92 (1, 2H, H-7, $J = 7$), 2.94 (r, 2H, H-6, J = 7), 6.12 (6, 2H, -OCH ₂), 6.66 (6, 1H, H-3), 6.92 (6, 1H, H-10), 7.42 (8, 1H, H-2'), 7.52 (4, 1H, H-5', $J = 9$), 7.86 (4, H-10), 7.42 (8, 1H, H-2'), 7.52 (4, 1H, H-5', $J = 9$), 7.86 (4,
10d ⁶	165–166 (92:8)	26	1630,1610	C ₂₂ H ₂₂ O, (366.42)	72.00,6.15 (72.12,6.05)	$(1, 1, -0, j - y)$, $(-y_0(s, 111, 11-2))$ $(1, 42 (s, 6H, CMe_2), 1.88 (s, 2H, H-7, j = 7), 2.90 (s, 2H, H-6, j = 7), 3.96 (s, 6H, 3'-OMe, 4'-OMe) (s, 64 (s, 1H, H-3), 6, 90 (s, 1H, H-1)) (s, 0, 1H, 1H, 2H) (s, 0)$
11a⁶	205–206 (95:5)	25	1640,1600	C ₂₁ H ₂₀ O ₄ (336.39)	74.95,6.00 (74.98,5.99)	(5, ITI, IT-10), $(-22-)$, $(-20-)$ (III, $-21-)$) 1.43 (5, 6H, CMe ₂), 1.94 (t, 2H, H-9, $J = 7$), 2.97 (t, 2H, H-10, $J = 7$), 3.95 (s, 2H, 4-OMe), 6.33 (s, 1H, H-6), 6.73 (s, 1H 23) $(-22-)$ (s, 2H, 4-OMe), $(-22-)$ (s, 1H, H-6), $(-23-)$ (s, 1H, 1-2), $(-22-)$ (s, 2) (s, 2), $(-22-)$ (s, 2) (s, 2) (s, 2), $(-22-)$ (s, 2) (s, 2) (s, 2) (s, 2), $(-22-)$ (s, 2) (s, 2) (s, 2) (s, 2), (s, 2) (s, 2), (s, 2) (s,
11b	220–221 (94:6)	25	1635, 1620	C ₂₂ H ₂₂ O, (366.42)	72.16,6.00 (72.12,6.05)	1.1.1. $H = 7$), $1.25 - 1.20$ (H, 2H, $H = 9$), 1.35 (s, 6H, CMe ₂), 1.85 (s, 2H, $H = 9$), 2.82 , 3.88 (2s, $3H$ each $5 - 0$), 2.90 (t, 2H, $H = 10$, $J = 7$), 3.82 , 3.88 (2s, $3H$ each $5 - 0$ Me, $4' - 0$ Me), 6.23 (s, 1H, $H = 9$), $1H$, $H = 0$, 6.54 (s, 1H, $H = 3$), 6.93 (d, 2H, $H = 3'$, $H = 5'$, $J = 9$),
11c	277–278 (90:10)	30	1635, 1610	C ₂₂ H ₂₀ O ₆ (380.40)	69.50,5.25 (69.46,5.30)	7.75 (d, 2H, H-2', H-6', J = 9) 1.50 (s, 6H, CMe ₂), 1.93 (t, 2H, H-9, J = 7), 2.95 (t, 2H, H-10, J = 7), 3.95 (s, 3H, 5-OMe), 6.10 (s, 2H, -OCH ₂ O-), 6.35 (s, 1H, H-6), 6.60 (s, 1H, H-3), 6.90 (d, 1H, H-5', J = 9), 7.35 (s, 1H, H-2'), 7.50 (d, 1H, H ² 6J = 9)

				TABLE	TABLE 3. (Continued)	
Compound	Mp (solvent) ⁴	Yield (%)	Ir (KBr) ν max cm ⁻¹	Molecular formula	Analysis % observed C, H (calcd C, H)	¹ H nmr (CDCl ₃), 8 ppm <i>J</i> in Hz
11d	255–256 (91:9)	25	1630, 1590	C ₂₃ H ₂₄ O ₆ (396.44)	69.65,6.13 (69.68,6.10)	1. 30 (s, 6H, CMe ₂), 1. 80 (t, 2H, H-9, $J = 7$), 2. 82 (t, 2H, H-10, $J = 7$), 3. 85 (s, 9H, 5-OMe, 3'-OMe, 4'-OMe), 6. 20 (s, 1H, H-6), 6.50 (s, 1H, H-3), 6. 85 (d, 1H, H-5', $J = 9$), 7. 25 (s,
12b [°]	203-204 (90:10) [lit. (20) 203-204]	35	1640, 1605	C ₂₂ H ₂₂ O, (366.42)	72.00,6.02 (72.12,6.05)	IH, H-2'), 7.40 (d, 1H, H-6', $J = 9$) 1.40 (s, 6H, CMe ₂), 1.80 (t, 2H, H-7, $J = 7$), 2.66 (t, 2H, H-8, $J = 7$), 3.83, 3.90 (2s, 3H each, 9-OMe, 4'-OMe), 6.40 (s, 1H, H-10), 6.45 (s, 1H, H-10), 6.92 (d, 2H, H-3', H-5', $J = 9$), 7.90
12c ^b	222–224 (88:12)	30	1630–1590	C ₂₀ H ₂₀ O ₆ (380.40)	69.40,5.39 (69.46,5.30)	(d, 2H, H-2', H-6', $J = 9$) 1.40 (s, 6H, CMe ₂), 1.78 (r, 2H, H-7, $J = 7$), 2.58 (r, 2H, H-8, J = 7), 3.82 (s, 3H, 9-OMe), 5.98 (s, 2H, -OCH ₂ O-), 6.40 (s, 11 2), 2 $= 7$, G_{12} , G_{12} , G_{12} , G_{13} , G_{14} , $G_{$
12d ^d	210–212 (90:10)	35	1630,1590	C ₂₃ H ₂₄ O ₆ (396.44)	69.60,6.13 (69.68,6.10)	111, 11-2); 0.00 -/.40 (m, 4H, H ₄₀₀) 1.40 (s, 6H, CMe ₂), 1.78 (r, 2H, H-7, $J = 7$), 2.60 (r, 2H, H-8, J = 7), 3.88 (s, 9H, 9-OMe, 3'-OMe, 4'OMe), 6.38 (s, 1H, H-3), 6.40 (s, 1H, H-10), 6.82 (d, 1H, H-5', $J = 9$), 7.24 (s, 1H, H-2'), 7.40 (d, 1H, H-6', $J = 9$)
[*] Solvent in each case is F ^b 10d : ¹³ C nmr (CDCI ₃ , 3), 109.085 (C-5'), 111.501 156.500 (C-2), 159.608 (C- [*] 11a : ¹³ C nmr (CDCI ₃ , (C-3, C-10a), 125.781 (C-2',	⁵ olvent in each case is petroleum ether-ErOAc in the ratio shown in parentheses. ^b 10d: ¹³ C nmr (CDCl ₃ , 75 MHz) 8 22.434 (C-6), 27.353 (Me ₂), 32.849 (C-7), 50 09.085 (C-5'), 111.501 (C-2'), 117.472 (C-4a), 120.115 (C-6'), 120.568 (C-1) 500 (C-2), 159.608 (C-10a), 163.263 (C-9a), 178.465 (C=O). ¹ 1a: ¹³ C nmr (CDCl ₃ , 75 MHz) 8 16.686 (C-10), 26.639 (Me ₂), 31.873 (C-9), C-10a), 125.781 (C-2', C-6'), 128.951 (C-3', C-5'), 131.071 (C-4'), 131.824 (C	1 ether- 5 22.4 117.47 .263 (C .263 (C .263 (S .28.951	EtOAc in the B4 (C-6), 27.3 2 (C-4a), 120, 2-9a), 178.465 86 (C-10), 26 (C-3', C-5'),	ratio shown ir 353 (Me ₂), 32. 115 (C-6'), 1 5 (C=O). .639 (Me ₂), 3 131.071 (C-4'	n parentheses. 	 *Solvent in each case is petroleum ether-ErOAc in the ratio shown in parenthese. *J0d: ¹³C nmr (CDCl₃, 75 MHz) & 22.434 (C-6), 27.353 (Me₂), 32.849 (C-7), 56.400, 56.462 (2 × OMe), 76.387 (C-8), 104.751 (C-3a), 106.306 (C-3), 109.085 (C-5'), 111.501 (C-2'), 117.472 (C-4a), 120.115 (C-6'), 120.568 (C-10), 124.967 (C-5'), 126.615 (C-5), 149.571 (C-3'), 152.169 (C-4'), 156.500 (C-2), 159.608 (C-10a), 163.263 (C-9a), 178.465 (C=O). *1a: ¹³C nmr (CDCl₃, 75 MHz) & 16.686 (C-10), 26.639 (Me₂), 31.873 (C-9), 56.259 (OMe), 75.993 (C-8), 101.380 (C-4a), 108.833 (C-3, C-10a), 125.781 (C-2', C-6'), 128.951 (C-3', C-5'), 131.071 (C-4'), 131.824 (C-1'), 159.300 (C-2), 159.125 (C-6a), 101.380 (C-4a), 177.947

(C=0).

^d**12d**: ¹³C nmr (CDCI), 75 MHz) & 16.644 (C-8), 26.018 (Me₂), 30.833 (C-7), 55.329, 55.555, 55.644 (3 × OMe), 74.928 (C-6), 89.838 (C-10), 106.239 (C-3), 107.600 (C-2'), 108.085 (C-5'), 108.663 (C-4a), 110.526 (C-8a), 118.893 (C-6'), 123.955 (C-1'), 148 (C-3'), 150.940 (C-4'), 154.271 (C-2), 157.603 (C-4b), 159.608 (C-10a), 160.805 (C-9), 170.042 (C=O).

i, 14, and 15.
13
Data for Dihydropyranoflavanones
TABLE 4.

Compound	Mp (solvent) ^a	Yield (%)	Ir (KBr) v max cm ⁻¹	Molecular formula	Analysis % observed C, H (calcd C, H)	¹ H nmr (CDCl ₃), δ ppm <i>J</i> in Hz
13a	150–151 (97:3)	60	1685, 1610	C ₂₀ H ₂₀ O ₃ (308.38)	77.85,6.65 (77.90,6.54)	1.35 (s, 6H, CMe ₂), 1.82 (t, 2H, H-7, $J = 7$), 2.77 (t, 2H, H-6, $J = 7$), 2.79 (dofd, 1H, He ₁ -3, $J = 13.5$, 2.7), 3.00 (dd, 1H, H ₁ -3, $J = 16.5$, 12.9), 5.35 (dofd, 1H, H-2, $J = 13.5$, 2.7), 6.38 (s, 1H, H-10), 6.97-7.47 (m, 5H, H _{nom}), 7.60 (s, 1H, H-4.5)
13b ⁶	126–127 (98:2)	3	1660, 1600	C ₂₁ H ₂₂ O ₄ (338.41)	74.58,6.58 (74.54,6.55)	$H_{m,2}$, $H_{r,2}$, $H_{r,2}$, $H_{r,1}$, $H_{r,2}$,
13c	130–131 (95:5)	70	1675, 1620	C ₂₁ H ₂₀ O, (352.39)	71.50,5.68 (71.58,5.72)	$J_{\text{uv}}(5, 6, 6, 1, 1, 82(t, 2H, H-7, J = 7), 2.75(t, 2H, H-6, J = 7), 2.81(dofd, 1H, H_{eq}-3, J = 13.5, 2.7), 3.01(dd, 1H, H_{u-3}, J = 16.5, 12.9), 5.37(dofd, 1H, H-2, J = 13.5, 2.7), 6.03(t, 2H, -OCH_2O-), 6.35(t, 1H, H-10), 6.85(d, 1H, H-5'), J = 8.7), 6.98(d, 1H, H-6', J = 8.7), 7.15(t, 1H, H-2'), 7.65(t, 1H, 1H, 1H, 1H, 1H,$
13ď	124–125 (98:2)	60	1660, 1605	C ₂₂ H ₂₄ O, (368.43)	71.70,6.52 (71.72,6.57)	(3, 11, 11-2) 1.34(6, 6H, CMe ₂), 1.81(t , 2H, H-7, $J = 7$), 2.76(t , 2H, H-6, $J = 7$), 2.81(dotd, 1H, H _m -3, $J = 13.5$, 2.7), 3.03(dd, 1H, H _m -3, $J = 16.5$, 13.0), 3.89, 3.91(2s, 3H each, 3'-OMe, 4'OMe), 5.36(dofd, 1H, H-2, $J = 13.7$, 2.5), 6.39(s , 1H, H-10), 6.88(d, 1H, H-5', $J = 8.7$), 6.97(d, 1H, H-6', $J = 8.7$), 7.06, 1H, H-2', $J = 8.7$), 6.07(d, 1H, H-6', $J = 8.7$),
14a	169–170 (97:3)	3	1660, 1600	C ₂₁ H ₂₂ O ₄ (338.41)	74.50,6.53 (74.54,6.55)	$\begin{array}{l} 1.066, \text{ LH}, \text{ IT-2}, \text{ J}, \text{ COUCL}, \text{ III}, \text{ IT-2}, \text{ J} = 7), 2.64 (t, 2H, 1.36 (s, 6H, CMe_2), 1.78 (t, 2H, 1H_{sq}-3, J = 13.5, 2.7), 3.00 (dd, 1H, 1H_{sq}-3, J = 15.5, 12.8), 3.86 (s, 3H, 5-OMe), 5.43 (do fd, 1H, 1H_{sd}-3, J = 16.5, 12.8), 3.86 (s, 3H, 5-OMe), 5.43 (do fd, 1H, 1H_{sd}-2, J = 13.5, 2.5), 6.02 (s, 1H, H-6), 7.36-7.46 (m, 5H, 1H_{solm}) \end{array}$

Compound	Mp (solvent) ^a	Yield (%)	Ir (KBr) v max cm ⁻¹	Molecular formula	Analysis % observed C,H (calcd C,H)	¹ H nmr (CDCl ₃), δ ppm <i>J</i> in Hz
14b ^d	160–161 (98:2)	60	1665, 1600	C ₂₂ H ₂₄ O ₅ (368.43)	71.78,6.61 (71.72,6.57)	1.34, 1.35 (2s, 6H, CMe ₂), 1.77 (t, 2H, H-9, $J = 7$), 2.60 (t, 2H, H-10, $J = 7$), 2.80 (dofd, 1H, H _{ed} -3, $J = 13.5$, 2.7), 2.98 (dd, 1H, H _{wt} -3, $J = 16.5$, 12.9), 3.83, 3.86 (2s, 3H each, 5-OMe, 4'-OMe), 5.36 (dofd, 1H, H-2, $J = 13.5$, 2.5), 6.01 (s, 1H, H-6), 6.94 (d, 2H, H-3', H-5', $J = 8.7$), 7.40 (d, 2H, H-7', H-6', $J = 8.7$)
14c	175–176 (94:6)	65	1660, 1600 C ₂₂ H ₂₂ O ₆ (382.42)	C ₂₂ H ₂₂ O ₆ (382.42)	69.06,5.80 (69.10,5.80)	21. 33, 1.35 (23, 6H, CMe ₂), 1.77 (t, 2H, H-9, $J = 7$), 2.60 (t, 2H, H-10, $J = 7$), 2.75 (dofd, 1H, H _{eq} -3, $J = 13.5$, 2.7), 2.94 (dd, 1H, H _{ar} -3, $J = 16.5$, 13.0), 3.85 (s, 3H, 5-OMe), 5.31 (d ofd, 1H, H-2, $J = 13.5$, 2.5), 5.98 (s, 2H, OGH ₂ O-), 6.00 (s, 1H, H-6), 6.82 (d, 1H, H-5', $J = 8.4$), 6.88 (d, 1H, H-6', I = 8.4), 6.97 (s, 1H, H-2')
14d	148–149 (97:3)	22	1650, 1580	C ₂₃ H ₂₆ O ₆ (398.0)	69.30,6.30 (69.34,6.53)	1.33, 1.36(25, 6H, CMe ₂), 1.78(t, 2H, H-9, $J = 7$), 2.61(t, 2H, H-10, $J = 7$), 2.80(dofd, 1H, H _{eq} -3, $J = 13.5$, 2.7), 3.00 (dd, 1H, H _{ur} -3, $J = 16.5$, 13.0), 3.87, 3.89, 3.92, (3s, 3H each, 5-OMe, 3'-OMe, 4'-OMe), 5.36(dofd, 1H, H-2, $J = 13.5$, 2.5), 6.02(s, 1H, H-6), 6.88(d, 1H, H-5', $J = 8.4$), 7.00(d, 7H, H-6', $J = 8.4$)
15b	125–126 (98:2)	60	1675,1575 C ₂₂ H ₂₄ O, (368.43)	C ₂₂ H ₂₄ O, (368.43)	71.70,6.53 (71.72,6.57)	1.38, 1.41(2s, 6H, CMe ₂), 1.78(t, 2H, H-7, $J = 7$), 2.56(t, 2H, H-8, $J = 7$), 2.70(dofd, 1H, H _{eq} -3, $J = 13.5$, 2.7), 3.06 (dd, 1H, H _{m-3} , $J = 10.5$, 13.0), 3.81, 3.82(2s, 3H each, 9-OMe, 4'-OMe), 5.31(dofd, 1H, H-2, $J = 13.5$, 2.5), 6.08(s, 1H, H-10), 6.93(d, 2H, H-3', H-5', $J = 8.7$), 7.38(d, 2H, H-2', H-2', $J = 8.7$), 7.38(d, 2H, H-2', H-3', H-5', $J = 8.7$), 7.38(d, 2H, H-2', H-2', $J = 8.7$), 7.38(d, 2H, H-2', H-3', H-5', $J = 8.7$), 7.38(d, 2H, H-2', H-2', $J = 8.7$), 7.38(J, 2H, H-2', J = 8.7), 7.38(J, 2H, H-2', H-2', J = 8.7), 7.38(J, 2H, H-2', H-2', H-2', J = 8.7), 7.38(J, 2H, H-2',

				TABLE	TABLE 4. (Continued)	
Compound	Mp (solvent)"	Yield (%)	Yield Ir (KBr) (%) v max cm ⁻¹	Molecular formula	Analysis % observed C, H (calcd C, H)	l Η nmr (CDCl ₃), δ ppm <i>J</i> in Hz
15c	150–153 (95:5)	60	1665,1590 C ₂₂ H ₂₂ O ₆ (382.42)	C ₂₂ H ₂₂ O ₆ (382.42)	69.17,5.75 (69.10,5.80)	1.38, 1.41 (2s, 6H, CMe ₂), 1.77 (t, 2H, H-7, $J = 7$), 2.55 (t, 2H, H-8, $J = 7$), 2.69 (dold, 1H, H _{eq} -3, $J = 13.5$, 2.7), 2.96 (dol, 1H, H _{ex} -3, $J = 16.5$, 12.8), 3.81 (s, 3H, 9-OMe), 5.98 (s,
7		C.		(2H, -0 CH ₂ O-), 5.27 (dotd, 1H, H-2, $f = 13.5$, 2.5), 6.07 (s, 1H, H-10), 6.82 (d, 1H, H-5', $f = 8.1$), 6.89 (d, 1H, H-6', $f = 8.1$), 6.97 (s, 1H, H-2')
···· bCI	(97:3)	2	(398.0) (398.0) (398.0)	C ₂₃ H ₂₆ U ₆ (398.0)	69.38,6.30 (69.34,6.53)	1.38, 1.40 (2s, 6H, CMe ₂), 1.78 (r, 2H, H-7, $J = 7$), 2.56 (r, 2H, H-8, $J = 7$), 2.70 (d of d, 1H, H_{sq}^{-3} , $J = 13$, 5.77), 2.98 (dd, 1H, H_{sx}^{-3} , $J = 16.5$, 12.9), 3.81, 3.84, 3.86 (3s each,
						9-OMe, $3'$ -OMe, $4'$ -OMe, 5.30 (d of d, 1H, H-2, $J = 13.5$, 2.5), 6.08 (s, 1H, H-10), 6.83 (d, 1H, H-5', $J = 8.1$), 6.92 (d, 1H, H-6', $J = 8.1$), 6.99 (s, 1H, H-2')
Solvent in each case is ^b 133b : ¹³ C-nmr (CDCI 104.640 (C-4a, C-5a), 114. 47, 101.234 (C=0)	ach case is petroleun nmr (CDCl ₃ , 75 MH 5a), 114.116 (C-3'	n ether- Iz) & 21 , C-5'),	EtOAc in the 1.60 (C-6), 2(, 115.779 (C-	petroleum ether-EtOAc in the ratio shown in parentheses. 3, 75 MHz) & 21.60 (C-6), 26.819, 27.069 (Me ₂), 32.6 116 (C-3', C-5'), 115.779 (C-10), 127.689 (C-2', C-6'),	n parentheses.) (Me ₂), 32.623 ((C-2', C-6'), 128	 *Solvent in each case is petroleum ether-EtOAc in the ratio shown in parenthese. *13b: ¹³C-nmr (CDCl₃, 75 MHz) 8 21.60 (C-6), 26.819, 27.069 (Me₂), 32.623 (c-7), 44.317 (C-3), 55.338 (OMe), 75.947 (C-8), 79.331 (C-2), 104.640 (C-4a, C-5a), 114.116 (C-3', C-5'), 115.779 (C-10), 127.689 (C-2', C-6'), 128.244 (C-5), 131.156 (C-1'), 159.821 (C-9a, C-10a), 161.363 (C-4b), 101.023 (C-6)
13d : ¹³ C-n	 mr (CDCl ₃ , 75 MH:	z) 8 16.	942 (C-6), 22	2.176, 22.356	i (Me ₂), 28.002 (0	2-7), 39.961 (С-3), 51.301 (ОМе ₂), 71.243 (С-8), 74.819 (С-2),

99.94 (C-10), 104.974 (C-5a), 106.632 (C-4a), 109.841 (C-2'), 111.157 (C-5'), 114.075 (C-6'), 123.557 (C-5), 127.020 (C-1'), 156.710 (C-3', C-4'),

167.200 (C-9a, C-10a), 186.284 (C=O). ^d**14b**: ¹³C-nmr (CDCl₃, 75 MHz) & 16.567 (C-10), 26.395, 27.035 (Me₂), 32.027 (C-9), 45.338 (C-3), 55.321, 55.976 (OMe)₂, 75.947 (C-8), 78.479 (C-2), 93.888 (C-6), 101.790 (C-4a), 106.313 (C-10a), 114.025 (C-2', C-6'), 127.381 (C-3', C-5'), 131.283 (C-1'), 159.660 (C-10b), 160.569 (C-5, C-4'), 161.777 (C-6a), 189.743 (C=O).

September 1992]

Compound Yield (%)	1(%)	Mp (solvent)	IR (KBr)	Molecular	Analysis % observed C,H	
	DDQ	NBS		$\nu \max \mathrm{cm}^{-1}$	Formula	(calcd C,H)
16a	80	70	154–156 A	1635,1610	C ₂₀ H ₁₆ O ₃ (304.32)	79.00,5.20 (78.93,5.29)
16b	75	70	lit. (13) 156 169–170 A	1630,1610	C ₂₁ H ₁₈ O ₄ (334.35)	75.38,5.47
16c	78	72	210–211 A	1640,1620	$C_{21}H_{16}O_5$ (348.36)	72.50,4.57 (42.41,4.63)
16d	80	70	157-158 A	1640,1615	C ₂₂ H ₂₀ O ₅ (364.50)	72.55,5.50 (72.51,5.53)
17a	85	80	199–201 A lit. (8) 201–205	1640,1600	C ₂₁ H ₁₈ O ₄ (334.35)	75.48,5.45 (75.43,5.42)
17b	80	70	207–208 A	1660,1610	C ₂₂ H ₂₀ O ₅ (364.50)	72.40,5.50 (72.51,5.53)
17c	75	70	lit. (25) 207–209 242–243 A	1635,1610	C ₂₂ H ₁₈ O ₆ (378.39)	70.00,4.70 (69.84,4.79)
17d	90	80	lit. (32) 242–244 195–196 B	1635,1610	C ₂₃ H ₂₂ O ₆ (394.43)	70.00,5.65 (70.04,5.62)
18b	75	67	lit. (25) 194–196 205–206 B	1655,1620	C ₂₂ H ₂₀ O ₅ (364.40)	72.57,5.55
18c	70	65	220–221 C	1645,1625	$C_{22}H_{18}O_6$ (378.39)	69.86,4.75 (69.84,4.79)

TABLE 5. Physical and Analytical Data for 16-18.

^aSolvent A, petroleum ether/C₆H₆; Solvent B, C₆H₆; Solvent C, C₆H₆/EtOAc.

tained was separated by chromatography on Si gel in petroleum ether-EtOAc (98:2) into pyranoflavanone **19a** (138 mg, 45% and dihydropyranoflavone **10a** (92 mg, 30%). **19a**: mp 119–120°; ir (KBr) 1665, 1615, 1380 cm⁻¹; ¹H-nmr (300 MHz) δ 1.40 (s, 6H, CMe₂), 2.72 (d of d, 1H, H_{eq}-3, J = 13.5, 2.7), 3.0 (dd, 1H, H_{ar}-3, J = 16, 12.9), 5.45 (d of d, 1H, H-2, J = 13.5, 2.7), 5.65 (d, 1H, H-7, J = 10), 6.35 (s, 1H, H-10), 6.45 (d, 1H, H-6, J = 10), 7.40–7.50 (m, 5H, H_{arom}), 7.60 (s, 1H, H-5). Anal. calcd for C₂₀H₁₈O₃ (306.36) C 78.41, H 5.92; observed C 78.45, H 5.95.

2-(3', 4'-Metbylenedioxy)phenyl-8,8-dimetbyl-2,3-dibydro-4H,8H-benzo[1,2-b:5,4-b']dipyran-4-one [**19c**].—Flavanone **13c** (352 mg, 1 mmol) was reacted with DDQ (227 mg, 1 mmol) in the same manner as described for the preparation of **19a**. Chromatographic separation on Si gel in petroleum ether-EtOAc (97:3) afforded the pyranoflavanone **19c** (175 mg, 50%) together with dihydropyranoflavone **10c** (87 mg, 25%). **19c**: mp 120–122°; ir (KBr) 1660, 1620, 1380, 1340 cm⁻¹; ¹H nmr (300 MHz) δ 1.45 (s, 6H, CMe₂), 2.82 (d of d, 1H, H_{eq}-3, J = 13.5, 2.7), 3.05 (dd, 1H, H_{ax}-3, J = 16.5, 12.9), 5.56 (d of d, 1H, H-2, J = 13.5, 2.7), 5.69 (d, 1H, H-7, J = 10), 6.01 (s, 2H, -OCH₂O-), 6.34 (s, 1H, H-10), 6.42 (d, 1H, H-8, J = 10), 6.89 (d, 1H, H-5', J = 8.7), 7.25–7.34 (m, 2H, H-2', H-6'), 7.65 (s, 1H, H-5). Anal. calcd for C₂₁H₁₈O₅ (350.37), C 71.99, H 5.18; observed C 72.03, H 5.15.

Mixtecacin [20a].—A mixture of flavanone 14a (338 mg, 1 mmol) and DDQ (227 mg, 1 mmol) in dioxane (15 ml) was refluxed for 6 h and filtered. After concentrating in vacuo, the residue was separated by chromatography on Si gel in petroleum ether-EtOAc (97:3) yielding mixtecacin [20a] (168 mg, 50%), mp 135–136° [lit. (10) mp 136–137°] and dihydropyranoflavone 11a (84 mg, 25%).

5-Metboxy-2-(3', 4'-metbylenedioxy)pbenyl-2,3-dibydro-8,8-dimetbyl-4H,8H-benzo[1,2-b:3'4-b']dipyran-4-one [**20c**].—Flavanone **14c** (382 mg, 1 mmol) was dehydrogenated with DDQ (1 mmol) as described for the preparation of mixtecacin [**20a**]. Chromatographic purification on Si gel in petroleum ether-EtOAc (97:3) afforded pyranoflavanone **20c** (209 mg, 55%), mp 168–170° [lit. (31) mp 168–169°], together with dihydropyranoflavone **11c** (76 mg, 20%).

CONVERSION OF FLAVANONES 13–15 INTO FLAVONES 10–12: I_2 , KOAc/HOAc METHOD.—A solution of I_2 (254 mg, 1 mmol) in glacial HOAc (15 ml) was added dropwise during 20 min to a stirred

			TABLE	6. ¹ H-n	TABLE 6. ¹ H-nmr Data of Pyranoflavones 16, 17, and 18.	
Flavone	CMe ₂	>C-CH=	=CH-Ar	H-3	Aromaric Prorons (<i>1</i> is in H ₂)	Other Protons
	s	d, <i>J</i> = 10	d, <i>J</i> = 10	s		
16a	1.48	5.74	6.46	6.76	6.89(s, 1H, H-10), 7.45–7.55 (m, 3H), 7.82–7.92 (m. 3H)	
16b	1.46	5.86	6.48	6.58	(5.70(6, 1H, H-10), 7.06(d, 2H, H-3', H-5', J = 9), 7.06(3, 2H, H-3', J = 9), 7.06(4, 2H, H-3', J = 0), 7.06(4, 2H, H-3'), 7.06(4, H-3'))	3.98 (s, 3H, 4'-OMe)
16c	1.44	5.84	6.54	6.62	7.00(4), 211, 17-2, 17-0, <i>J</i> = <i>7</i>), 0.26(5), 111, 17-2) 6.88(5, 11H, H-10), 7.44(d, 1H, H-5', <i>J</i> = 9), 7 57(5, 1H, H-2'), 7.88(d, 1H, H-6', 1= 9), 8.08(c)	6.08 (s, 2H, -OCH ₂ O-)
Pyl	1 45	2 8 S	V 8 V	75 7	IH, H-S) 6 00/2 1U U IN 7 40 7 00/2 2U 0 06/2	
		(0.)	2.5	2	0.00 (s) 111, 11-10), /.40-/.00 (iii, 211), 0.02 (s, 1H, H-5)	2.9/ (s, on, 2 -Ume, 4 -Ume)
17a	1.56	5.70	6.96	6.86	6.45 (s, 1H, H-6), 7.60 (m, 3H), 8.30 (m, 2H)	4.00(s, 3H, 5-OMe)
171b	1.50	5.62	6.84	6.58	6.32 (s, 1H, H-6), 7.01 (d, 2H, H-3', H-5', <i>J</i> = 8.5), 7.81 (d. 2H, H-2', H-6', <i>J</i> = 8.5)	3.88, 3.95 (2s, 6H, 5-OMe, 4'-OMe)
17c	1.55	5.60	6.80	6.50	6.25 (s, 1H, H-6), 7.25–7.70 (m, 3H)	3.95 (s, 3H, 5-OMe), 6.05 (s,
17d	1.52	5.63	6.83	6.60	6.34(s, 1H, H-6), 6.98(d, 1H, H-5, <i>J</i> = 8.5),	2.97 (s, 6H, 3'-OMe, 4'-OMe),
18h	1 42	5 SK	6 64	6 48	7.32(d, 1H, H-2'), 7.51(d, 1H, H-6', $J = 8.5$) 6.38(e 1H H-10) 6.06(d 2H H-2' H 5' $I = 0$)	3.98 (s, 3H, 5-OMe) 2 88 2 06/25 6H 0 OM2
					7.72 (d, 2H, H-2', H-6', $J = 9$)	4'-OME)
18 c	1.44	5.56	6.64	6.48	6.35 (s, 1H, H-10), 6.99 (d, 1H, H-5', $J = 8.7$),	3.96(s, 3H, 9-OMe), 6.01(s,
					7.25-7.50(m, 2H, H-2', H-6')	2H, -OCH ₂ O-)

anc
~~
r.
<u> </u>
• •
5
9
-
ŝ
vone
ç
2
÷,
7
ĕ
5
- G
~
р.
Ъ
0
3
)ata
~~
\mathbf{H}
- L
Ē
nmr
÷.
-
છં
-
(H)
JLE

solution of the dihydropyranoflavanone 13 (1 mmol) and freshly fused KOAc (1 g) in glacial HOAc (10 ml) at 120° and refluxed for 5 h. The reaction mixture was then cooled, diluted with H_2O (15 ml), and extracted with CHCl₃ (2 × 25 ml). The CHCl₃ extract was successively washed with a dilute solution of NaHCO₃, Na₂S₂O₃, and H₂O and dried (Na₂SO₄). Evaporation of the solvent furnished the dihydropyranoflavone 10 which was recrystallized using petroleum ether/EtOAc.

The dihydropyranoflavanones 14 and 15 also furnished the flavones 11 and 12, respectively, on treatment with $I_2/KOAc$ in HOAc as described above. The yields were 10a (90%), 10b (85%), 10c (83%), 10d (79%), 11a (80%), 11b (90%), 11c (80%), 11d (75%), 12b (85%), 12c (78%), and 12d (83%). The physical and spectral data of flavones 10–12 are listed in Table 3.

ACKNOWLEDGMENTS

We acknowledge the Council of Scientific and Industrial Research, Government of India, New Delhi, for award of a Senior Research Fellowship to one of us (MS). We wish to thank Dr. (Mrs.) N. Shobana, Department of Chemistry, University of Florida, USA and Dr. M.S. Shashidhar, Department of Chemistry, University of Oregon, USA for providing ¹H-nmr and ¹³C-nmr spectra of some of the samples. We also thank Mr. S. Kamaraj for typing the manuscript.

LITERATURE CITED

- 1. M.D. Bently, A. Hassanali, W. Lwande, P.G.W. Nioroge, E.N. Ole Sitayo, and M. Yatagai, Insect. Sci. Its Appl., 8, 85 (1985).
- 2. A. Banerji and D.L. Luthria, Indian J. Chem. Sect. B, 29, 163 (1990).
- 3. Y. Kimura and K. Yoshiyuki, Jap. P. 86, 291, 526 (1986); Chem. Abstr. 106, 155104t (1987).
- 4. K. Subrahmanyam, J.R. Rao, and K.V.J. Rao, Indian J. Chem. Sect. B, 15, 12 (1977).
- 5. D. Roy, N.N. Sharma, and R.N. Khanna, Indian J. Chem. Sect. B, 15, 1138 (1977).
- 6. D. Roy, N.N. Sharma, and R.N. Khanna, Indian J. Chem. Sect. B, 16, 463 (1978).
- 7. S.S. Chibber and S.K. Dutt, Phytochemistry, 20, 1460 (1981).
- 8. S.A. Khalid and P.G. Waterman, Phytochemistry, 20, 1719 (1981).
- 9. G. Camele, F.B. Monache, G.D. Monache, and G.B. Marini Bettolo, Phytochemistry, 19, 707 (1980).
- 10. X.A. Dominquez, O. Tellez, and R.E. Georgina, Phytochemistry, 22, 2047 (1983).
- 11. J. Hlubucek, E. Ritchie, and W.C. Taylor, Aust. J. Chem., 24, 2347, 2355 (1971).
- 12. V.K. Ahluwalia, A. Jain, C. Prakash, and S. Bala, Indian J. Chem. Sect. B, 21, 101 (1982).
- 13. A. Islam, R.K. Gupta, and M. Krishnamurthy, Indian J. Chem. Sect. B, 20, 21 (1981).
- 14. K. Subrahmanyam, J.M. Rao, K.V.J. Rao, and T.S. Ramesh, Indian J. Chem. Sect. B, 14, 339 (1976).
- 15. S.B. Malik, P. Sharma, and T.R. Seshadri, Indian J. Chem. Sect. B, 15, 493 (1977).
- 16. A.C. Jain, R.G. Gupta, and A. Gupta, Indian J. Chem. Sect. B, 19, 101 (1980).
- 17. A. Banerji and N.C. Goomer, Synth. Commun., 15, 1165 (1985).
- M. Subramanian, "Synthetic Studies on Some Nitrogen and Oxygen Heterocyclic Systems," Ph.D. Thesis, Bharathiar University, Coimbatore, India, 1991.
- 19. R.V. Suresh, C.S. Rukmani Iyer, and P.R. Iyer, Heterocycles, 24, 1925 (1986).
- 20. K.J. Rajendra Prasad, C.S. Rukmani Iyer, and P.R. Iyer, Indian J. Chem. Sect. B, 22, 278 (1983).
- P.J. Brogden, G.D. Gobbult, and J.D. Hepworth, in: "Comprehensive Heterocyclic Chemistry." Ed. by A.R. Katrizky and C.W. Rees, Pergamon Press, Oxford, 1984, Vol. 3, p. 585.
- 22. V.K. Bhalla, V. Ramadas Nayak, and S. Dev, Tetrahedron Lett., 2401 (1968).
- 23. T.R. Seshadri, J. Sc. Ind. Res., 9A, 276 (1950).
- K.R. Markam and V. Mohan Chari, in: "The Flavonoids—Advances in Research." Ed. by J.B. Harborne and T.J. Mabry, Chapman and Hall, 1982, pp. 19–132.
- 25. A. Banerji, D.L. Luthria, and B.R. Prabhu, Phytochemistry, 27, 3637 (1988).
- H.D. Becker, in: "The Chemistry of Quinonoid Compounds." Ed. by S. Patai, John Wiley and Sons, New York, 1974, p. 335.
- 27. A.B. Turner, in: "Synthetic Reagents." Ed. by J.S. Pizey, Ellis Horwood Ltd., Sussex, 1977, Vol. 3, p. 193.
- 28. J.S. Pizey, "Synthetic Reagents," Ellis Horwood Ltd., England, 1974, Vol. 2, pp. 1-64.
- 29. S.W. George and A. Robertson, J. Chem. Soc., 1535 (1937).
- A.S. Sonde, "Studies in Oxygen Heterocycles," Ph.D. Thesis, Indian Institute of Technology, Bombay, India, 1976.
- 31. K. Subrahmanyam, J.M. Rao, and K.V.J. Rao, Indian J. Chem. Sect B, 15, 105 (1977).
- 32. F.R. Garcez, S. Scramin, M.C. Nascimento, and W.B. Mors, Phytochemistry, 27, 1079 (1988).